

BACKGROUND		
 Object permanence is an important 		<u>S</u> T
cognitive construct that develops during	Scor	e
early life	0	Ch
Object permanence is the ability to	1	Ch
understand and remember that objects		shi
or neonle continue to exist even when		mo
thoy cannot be observed or sensed in any	2	Ch
they cannot be observed of sensed in any		wh
way	3	Ch
Ine construct of object permanence links		mo
to motor skill development and	Л	eu
contributes to building understanding of	4	LOO
object properties ¹⁻²	5	Du
The purpose of this study was to examine	J	clo
the change in object permanence skill	6	Pu
over time as sitting skills advanced, in		un
infants with neuromotor delays	7	Pu
		clo
Participants	8	*Fi
 Nineteen infants receiving early intervention 		(ite
services for motor delay	9	*Fi
 Recruited as part of a larger START-Play study 		wh
Mean age at entry = 11.8 mo, SD = 3 mo	1.0	nic
Inclusion criteria: >1SD below mean for	10	*D bic
corrected age on motor Bayley and ability to		sec
prop sit for at least 3 seconds		CO
 Exclusion criteria: Blindness, diagnosis of 	*Tak	en fr
progressive disorder, ability to transition in and	recomme	
out of sitting	func	tion.

*Start-Play Consortium http://start-play.unl.edu/ References University of Delaware – malobo@udel.edu 1. Soska, K. C., Adolph, K. E., & Johnson, S. P. (2010). Systems in development: motor skill acquisition facilitates Michele A. Lobo, PhD, PT; James C. Galloway, PhD, PT; Iryna Babik, PhD; Andrea Cunha, PhD, PT three-dimensional object completion. Developmental psychology, 46(1), 129. Virginia Commonwealth University – scdusing@vcu.edu 2. Schwarzer, G., Freitag, C., Buckel, R., & Lofruthe, A. (2013). Crawling is associated with mental rotation ability by Stacey C. Dusing, PhD, PT; Emily Marcinowski, PhD; Tanya Tripathi, PT 9-month old infants. Infancy, 18(3), 432-441. Duquesne University – harbourner@duq.edu 3. Kermoian & Campos Object Permance scale, Kermoian, R., & Campos, J. J. (1988). Locomotor experience: A Regina Harbourne, PT, PhD; Hui-Ju Chang, PhD, PT; Mihee An, PhD, PT; Jaclynn Stankus, MS..Ed University of Washington – westcs@uw.edu facilitator of spatial cognitive development. *Child development*, 908-917. Sally Westcott McCoy, PT, PhD; Lin-Ya Hsu, PhD, PT; Whitney Gregory, PT 4. <u>Early Hum Dev. 2013 Dec; 89(12): 10.1016/j.earlhumdev.2013.08.009</u>. University of Nebraska-Lincoln – jbovaird2@unl.edu 5.©Nathanial Joseph Cochran 2017; nathancochran.info James Bovaird, PhD; Susan Sheridan, PhD; Natalie Koziol, PhD

THE RELATIONSHIP BETWEEN DEVELOPING SITTING POSTURAL CONTROL AND OBJECT PERMANENCE IN INFANTS WITH NEUROMOTOR DISORDERS

Regina Harbourne¹, Hui-Ju Chang¹, Jaclynn Stankus², START-Play Consortium* ¹Rangos School of Health Sciences, Duquesne University; ²School of Education, Duquesne University

METHODS **START-Play Scale for Object Permanence** Procedure Object permanence test done with sitting support as Behavior Child does not look at or follow object needed Sitting control measured using 3 trials, averaged Child looks at object in one location, then shifts gaze 45° to find object when object is within a session moved Videos of object permanence testing and sitting Child re-orients body to gaze at moved object control recorded at baseline and after 3 months in when object shifted in space home setting Child re-orients body posture to follow toy Videos of sitting and object permanence scored by moved out of view (Example: looking over blinded coders off site edge of tray in high chair when toy dropped) Looks inside of wide container and attempts to Sitting Postural Control retrieve toy dropped inside The Angles Video Goniometer⁵ application measures forward trunk incline when support released in sitting Pulls cloth off interesting toy after watching Coder moves video to point where the infant stops falling forward cloth being placed and toy partially visible³ after trunk release Pulls cloth off toy after watching toy being slid The coder (95% reliability) measures the angle of the trunk to the under cloth³ legs at the lowest point Pulls cloth off interesting toy after watching cloth being placed, with identical cloth nearby³ *Finds a toy hidden under one of two cups (item 40 in cognitive Bayley)⁴ *Find a toy hidden under one of two cups when the cups are reversed after the toy is hidden (item 45 in cognitive Bayley)⁴ *Double visual displacement used as a toy is hidden under one cup, removed and hidden a second time under the second cup (item 50 in cognitive Bayley)⁴ aken from studies of early working memory, commended as predictors of later executive

CONCLUSIONS

CLINICAL RELEVANCE

Acknowledgements

Institute of Education Sciences, U. S. Department of Education; Early childhood and early intervention R324A150103

RESULTS					
	Sitting Posture Improved				
	 Repeated measures from baseline to 3 months post-baseline showed significant change over time (p=0.004) 				
SitUnsup3mo +/- 1 SD	 Sitting changed from leaning forward (mean=67°) to (mean=78°) 				
OP3mo	 Object Permanence Repeated measures from baseline to 3 months post-baseline showed significant change over time (p=0.022) OP scaled scores changed from a mean of 5 to a mean of 7 				
Infants sitting arms froe					
PassGMFMSit#24 FMItem24pass rs: +/- 1 SD	 Infants passing item #24 on GMFM (sits at least 3 seconds arms free) scored significantly higher on the object permanence scale than infants with less functional sitting skill (p=0.01) 				

Improvements in sitting skill, even though delayed developmentally, may contribute to advancing a cognitive skill such as understanding the permanent characteristics of objects

Advancement of object permanence may be related to sitting development, in addition to advances previously noted in self-mobility studies

Therapists should understand that infants may be building specific cognitive constructs during the emergence of sitting

Cognitive tasks should be embedded in tasks focused on motor skill building

Faculty Development Fund Grant 2015-2016, Duquesne University Thank you to all the therapists and families in START-Play!

