

# A Novel Means-End Problem Solving Assessment Tool (MEPSAT): Evaluation of Validity and Reliability

Andrea B. Cunha, Iryna Babik, Iryna Babik, Natalie Koziol, Lin-Ya Hsu, Jayden Nord, START-Play Consortium, & Michele A. Lobo

### Introduction

Means-end problem-solving (MEPS) tasks can serve as early indicators of infants' cognitive development (Lobo & Galloway, 2013). Previous studies have highlighted delays in performance and learning of MEPS in at-risk infants compared to typically developing infants (Clearfield et al., 2015; Cunha et al., 2018).

However, real-time identification of delays in MEPS can be challenging since MEPS behaviors have traditionally been analyzed using time-intensive behavioral coding methods (Babik et al., 2018; Cunha et al., 2018).

To provide an affordable and feasible assessment of MEPS for research and clinical settings, we developed a novel Means-End Problem-Solving Assessment Tool (MEPSAT).

The goal of this study was to evaluate construct validity and reliability of the MEPSAT.

### Methods

- 22 typically developing infants (Mean=5.9 months at the first visit; SD=0.2) and 30 infants with motor delays [Mean=10.4 months (prematurity-corrected) at the first visit; SD=2.4].
- Infants were assessed longitudinally at 5 visits across 1-1.5-years in their homes.
- At each visit, infants engaged in a MEPS task: pulling a towel to retrieve a distant, supported toy (Figure 1).



**Figure 1.** Experimental setup for the means-end problem solving assessment.

- The MEPSAT was used to score from videos: 1) Meansend learning; and 2) level of performance (Figures 2 A-B).
- Infants were also assessed using the Bayley Scales of Infant and Toddler Development (Bayley-III).



**Figure 2.** Means-end Problem Solving Assessment Tool (MEPSAT): A) Determination of learning; B) Rating the level of means-end performance on a scale from 0 through 9.

- Validity of the MEPSAT scores: Validated against cognitive and motor subscales of the Bayley-III. Within-infant associations and between-infant associations were evaluated by linear mixed modeling (LMM). • Reliability of the MEPSAT scores: Intra- and inter-rater reliability were
- evaluated via re-scoring of videos. It was calculated by quadratic weighted dependent kappas and intraclass correlation coefficients (ICC).

### Results

### Validity

- Significant within-child associations (*p*<.05) were observed between MEPSAT scores and Bayley-III scores for both typically developing children and those with motor delays
- Significant between-child effects (p < .05) were observed only for children with motor delays.

**Table 1.** Associations between MEPSAT outcomes (means-end learning and

 level of means-end performance) and Bayley-III.

|             |                        | Me                    | ans-End L | Learning vs | . Bayley So            | cores                  |      |       |       |
|-------------|------------------------|-----------------------|-----------|-------------|------------------------|------------------------|------|-------|-------|
|             |                        | Within-Infant Effects |           |             |                        | Between-Infant Effects |      |       |       |
| Sample      | Bayley                 | β                     | SE        | р           | $f^2$                  | $\beta$                | SE   | р     | $f^2$ |
| Typical     | Cog                    | 0.56                  | 0.09      | <.001       | 0.10                   | 0.03                   | 0.04 | 0.559 | 0.02  |
| Motor delay | Cog                    | 0.17                  | 0.05      | 0.001       | 0.11                   | 0.52                   | 0.13 | <.001 | 0.63  |
| Typical     | FM                     | 0.59                  | 0.09      | <.001       | 0.22                   | 0.02                   | 0.05 | 0.739 | 0.03  |
| Motor delay | $\mathbf{F}\mathbf{M}$ | 0.16                  | 0.04      | <.001       | 0.14                   | 0.59                   | 0.13 | <.001 | 0.77  |
| Typical     | GM                     | 0.58                  | 0.09      | <.001       | 0.35                   | 0.00                   | 0.06 | 0.977 | 0.05  |
| Motor delay | GM                     | 0.22                  | 0.05      | <.001       | 0.20                   | 0.46                   | 0.14 | 0.002 | 0.40  |
|             |                        | Level of I            | Means-End | d Performa  | nce vs. Bay            | yley Scores            |      |       |       |
|             |                        | Within-Infant Effects |           |             | Between-Infant Effects |                        |      |       |       |
| Sample      | Bayley                 | β                     | SE        | р           | $f^2$                  | β                      | SE   | р     | $f^2$ |
| Typical     | Cog                    | 0.45                  | 0.10      | <.001       | 0.03                   | 0.01                   | 0.04 | 0.831 | 0.01  |
| Motor delay | Cog                    | 0.10                  | 0.05      | 0.059       | 0.03                   | 0.60                   | 0.12 | <.001 | 1.15  |
| Typical     | FM                     | 0.47                  | 0.10      | <.001       | 0.05                   | -0.02                  | 0.05 | 0.606 | 0.00  |
| Motor delay | $\mathbf{F}\mathbf{M}$ | 0.12                  | 0.04      | 0.008       | 0.07                   | 0.68                   | 0.11 | <.001 | 1.49  |
| Typical     | GM                     | 0.49                  | 0.09      | <.001       | 0.18                   | 0.01                   | 0.07 | 0.926 | 0.03  |
| Motor delay | GM                     | 0.15                  | 0.05      | 0.006       | 0.08                   | 0.54                   | 0.13 | <.001 | 0.71  |

- For both groups, variations in MEPSAT scores across time were related to variations in the Bayley-III scores across time
- Children with motor delays who showed greater MEPSAT scores on  $\bullet$ average also had higher Bayley-III scores on average.







# Results

### Reliability

and inter-reliability of means-end Strong intralearning and level of means-end performance scores was found for both typically developing children and children with motor delays.

Table 2. Table 3. Intra- and inter-rater reliabilities (with 95% CI) for MEPSAT scores

| Quadratic Weighted Dependent Kappas for Means-I          |                         |       |  |  |  |  |  |  |
|----------------------------------------------------------|-------------------------|-------|--|--|--|--|--|--|
| Sample                                                   | Inter-Rater Reliability | Intra |  |  |  |  |  |  |
| Typical                                                  | .869 (.785, .952)       | .93   |  |  |  |  |  |  |
| Motor delay                                              | .979 (.965, .993)       | .8    |  |  |  |  |  |  |
| Intraclass Correlation Coefficients for Level of Means-e |                         |       |  |  |  |  |  |  |
| Sample                                                   | Inter-Rater Reliability | Intra |  |  |  |  |  |  |
| Typical                                                  | .995 (.992, .999)       | .99   |  |  |  |  |  |  |
| Motor delay                                              | .997 (.995, .999)       | .99   |  |  |  |  |  |  |

## Conclusions

- The MEPSAT is supported by validity and reliability evidence and is thus a promising tool for screening to identify early problem-solving delays in infants with a range of motor abilities.
- The MEPSAT can be performed in the home environment quickly and with minimal resources.
- The. MEPSAT has a simple scoring system that can distinguish differences in performance among infants with varying levels of motor delay and detect changes in performance for a child across time.
- The MEPSAT can be used in clinical and research settings to assess the efficacy of interventions aimed at advancing problem-solving skills, motor ability, and cognitive outcomes in at-risk infants.

# References

- Babik et al. (2019). Means-end problem solving in infancy: development, emergence of intentionality, and transfer of knowledge. *Developmental Psychobiology*, 61(2):191-202.
- Clearfield et al. (2015). Socioeconomic status (SES) affects means-end behavior across the first year. Journal of Applied Developmental Psychology, 38, 22-28. • Cunha, et al. (2018). Prematurity may negatively impact means-end problem solving
- across the first two years of life. Research in Developmental Disabilities, 81, 24-36. • Lobo & Galloway (2013). Assessment and stability of early learning abilities in preterm and full-term infants across the first two years of life. Research in Developmental Disabilities, 34, 1721–1730.



### End Learning -Rater Reliability 36 (.854, >.999) 857 (.730, .985) end performance -Rater Reliability 98 (.995, >.999) 96 (.992, >.999)