Introduction & Purpose
- The development of infant motor function can support meaningful interactions with the environment.
- Problem solving, a cognitive process, is grounded in infants’ everyday experiences. ¹
- Infants who are more stable sitters may be more capable of exploring objects. ²,³
- The purpose of this analysis is to evaluate if there is change in early play-based problem solving skills in response to change in sitting ability.
- As sitting ability increases, the frequency of early problem solving skills may also increase.

Participants
- 34 typically-developing infants
- 54.55% female infants, 9.09% of Hispanic origin
- Baseline enrollment range: 4.0-6.9 months
- Baseline mean age: 5.68 months
- Infants were enrolled at the onset of sitting
 - Sit arms free or propped minimum 3 seconds
 - Without the ability to move in and out of sitting
 - Younger than 7 months of age

Assessment
- Assessment visits completed at baseline, after 3 weeks, and after 6-8 weeks.
- Assessments were video-taped to allow for scoring afterward.
- Early Problem Solving Indicator� (EPSI): measure of early problem solving used during play with 3 standard toys (cups, popup, gumball, Figure 1)
 - Assessors presented each toy for 2 minutes while supporting the infant in sitting
 - Datavyu 1.3 was used by reliable coders to quantify the frequency of four behaviors (looking, exploration, function, solution).

Gross Motor Function Measure Sitting Scale³ (GMFM-SS): standardized assessment of sitting skills in children
- Assessors observed and tested infant’s gross motor ability, based on GMFM Sitting Scale (GMFM-SS)

Results

Analytic Plan
- Multilevel modeling was used to evaluate whether sitting ability uniquely predicts frequency of problem solving behaviors using the software program, SAS 9.4.
 - Time (level 1) was nested within infants (level 2).
 - EPSI Variable: Weighted frequency was summed across all three tasks with a total time period of 6 minutes. ¹
 - Looks, explores - 1 point
 - Functions - 2 points
 - Solutions - 3 points

GMFM-SS Variable: Scores were summed to produce raw scores. ¹
- 0 - does not initiate
- 1 - initiates
- 2 - partially completes
- 3 - completes
- Mean sitting ability at baseline = 15.618
 - Below average sitters = 1 SD below mean sitting ability at baseline
 - Average sitters = within -1 SD and +1 SD from the mean sitting ability at baseline
 - Above average sitters = 1 SD above mean sitting ability at baseline.

Discussion
- At baseline, infants may be more interested in sitting and playing with toys that at other time points.
 - Simple actions (banging, mouthing) may be repeated more often, but the quality of interaction may change with time.
- Unexpectedly, above average sitters decrease in their frequency of problem solving behaviors.
 - These infants may be less engaged with sitting and stationary play, once they are capable of locomotion.
 - Future study may explore how position (sitting, standing, squatting) or locomotion (crawling, scooting, walking) changes how infants explore their environment.

Findings
- The final model indicated significant quadratic effects of age (β20=−10.72, t(85.4)=−2.98, p<0.01) and baseline sitting ability (β02=−58.31, t(2.12, p=0.04) on EPSI score.
- No interactions between sitting and age were found.

Age Effects ³
1. At baseline visit, there was a linear effect of age on EPSI score (β10=21.93, t(95.5)=2.89, p<0.01).
2. At 3 weeks post baseline, there was no linear effect of age on EPSI score (β10=5.77, t(95.6)=1.18, p=0.24).
3. At 6-8 weeks post baseline, there was no linear effect of age (β10=−13.54, t(87.7)=−1.73, p=0.09).

Baseline Sitting Ability Effects ³ (Figure 2)
1. Below average sitters: there was no linear effect of baseline sitting ability on EPSI score (β01=4.87, t(30.2)=1.54, p=0.13).
2. Average sitters: there was no linear effect of baseline sitting ability on EPSI score (β01=−0.23, t(33.4)=−0.16, p=0.87).
3. Above average sitters: there was a linear effect of baseline sitting ability on EPSI score (β01=−5.32, t(34.3)=−2.31, p=0.03).

References

Acknowledgements
[IES grant(NCT02593825)to SCD & CHOR grant to SCD, ECM]